Using inexact gradients in a multilevel optimization algorithm

نویسندگان

  • Robert Michael Lewis
  • Stephen G. Nash
چکیده

Many optimization algorithms require gradients of the model functions, but computing accurate gradients can be computationally expensive. We study the implications of using inexact gradients in the context of the multilevel optimization algorithm MG/Opt. MG/Opt recursively uses (typically cheaper) coarse models to obtain search directions for finer-level models. However, MG/Opt requires the gradient on the fine level to define the recursion. Our primary focus here is the impact of the gradient errors on the multilevel recursion. We analyze, partly through model problems, how MG/Opt is affected under various assumptions about the source of the error in the gradients, and demonstrate that in many cases the effect of the errors is benign. Computational experiments are included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization

We present a class of inexact adaptive multilevel trust-region SQP-methods for the efficient solution of optimization problems governed by nonlinear partial differential equations. The algorithm starts with a coarse discretization of the underlying optimization problem and provides during the optimization process 1) implementable criteria for an adaptive refinement strategy of the current discr...

متن کامل

Rate Analysis of Inexact Dual First Order Methods: Application to Distributed Mpc for Network Systems

In this paper we propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of co...

متن کامل

A globally and R-linearly convergent hybrid HS and PRP method and its inexact version with applications

A hybrid HS and PRP type conjugate gradient method for smooth optimization is presented, which reduces to the classical RPR or HS method if exact linear search is used and converges globally and R-linearly for nonconvex functions with an inexact backtracking line search under standard assumption. An inexact version of the proposed method which admits possible approximate gradient or/and approxi...

متن کامل

Optimization of thermal curing cycle for a large epoxy model

Heat generation in an exothermic reaction during the curing process and low thermal conductivity of the epoxy resin produces high peak temperature and temperature gradients which result in internal and residual stresses, especially in large epoxy samples. In this paper, an optimization algorithm was developed and applied to predict the thermal cure cycle to minimize the temperature peak and the...

متن کامل

Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem

In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013